
SequalsK—A Bidirectional Swift-Kotlin-Transpiler
Dominik Schultes

Technische Hochschule Mittelhessen
Friedberg, Germany

dominik.schultes@iem.thm.de

Abstract—Developing two separate versions of an app for iOS
and Android causes considerable efforts. Therefore, a lot of
cross-platform development frameworks are available that are
able to produce apps for both platforms out of a single code
base. However, there are tradeoffs that are connected with these
frameworks, in particular, a high tool dependency. Therefore, we
propose to stick with native development but to take advantage
of the shrinking gap between both platforms due to the fact
that the current programming languages, Swift for iOS and
Kotlin for Android, are considerably more alike than their
respective predecessors. Relating to the model-view-controller
design pattern, we propose to automatically transpile the model
part of the app in a bidirectional fashion, i.e., from Kotlin to
Swift and vice versa. This way, iOS experts can concentrate
on optimizing the user interface (view- and controller-part) for
iOS, and Android experts can do the same for Android, but
all developers can jointly work on the shared model part: each
developer can read, correct, and enhance the source code of the
model using their own preferred programming language; the
resulting version is then transpiled to an equivalent version in
the other language.

We present a working prototype of a transpiler—which we call
SequalsK—that supports the majority of the important constructs
of both languages and is able to generate syntactically and
semantically correct Kotlin code out of Swift code and vice versa.

In a case study we show that the model part of a board game
app can be transpiled in both directions without any limitations.
Starting with a working Swift version, the Android version can
be derived with little manual effort: the automatically transpiled
model part forms 86 percent of the resulting source code.

Index Terms—mobile app, transpilers, transcompilers, Swift,
Kotlin, cross-platform

I. INTRODUCTION

The mobile operating system market has always been frag-
mented. For the last couple of years, the situation has been
quite clear with only two big players left: in November 2016
the total market share of Android and iOS exceeded 90 % for
the first time and has grown to 99.4 % in December 2020 [1].
Thus, from a practical point of view as an app developer, it
is nowadays sufficient to concentrate on only two platforms.
However, in most cases, neither of these platforms may be
neglected. If a developer targeted only iOS, they would lose
72.5 % market share [1]. If only Android was targeted, a
significant share of the total purchasing power would be lost
since Apple’s App Store for iOS generated 87.3 % more in
consumer spending than Google’s Play Store for Android in
2020 [2].

Both platforms provide software development kits (SDKs)
to allow the creation of apps for the respective platform.
The targeted hardware and the provided features have many

similarities, e.g., that usually every mobile device no matter
if running Android or iOS can access GPS data and the
respective SDK makes these data available to the app de-
veloper. Furthermore, the app development for both platforms
has conceptual similarities as well, e.g., that object-oriented
programming and design patterns like model-view-controller
are applied. Nevertheless, the concrete implementations are
quite different. Firstly, different programming languages are
used: Java or Kotlin for Android vs. Objective-C or Swift for
iOS. Secondly, different APIs are provided, e.g., the actual
methods to retrieve GPS data have different names. Thirdly,
different tools are integrated into the respective IDE, e.g., for
designing the user interface.1

This leads to the fact that when developing an app for both
platforms, one is usually able to reuse parts of the software
architecture, probably a large amount of the assets like images,
and some concepts, but from a pure implementation point of
view, one has to do the whole work twice. Accordingly, this
causes a large total effort. Furthermore, the time to market
increases when the platforms are dealt with one after the
other—or, if the apps for both platforms are implemented
simultaneously, the total effort probably further increases
since similar problems might be solved simultaneously by
different developers, wasting more time than a successive
implementation for both platforms would have cost where one
developer could learn from the findings of the other developer.
To make things worse, two different code bases typically lead
to significant problems w.r.t. maintainability: bug fixing and
implementing additional features require that similar steps
have to be performed within both implementations. Sooner
or later this might lead to inconsistencies between both apps,
which is usually not desirable.

In order to avoid all these drawbacks, there is a wide range
of cross-platform approaches that allow app development
for at least the two major platforms with only one code
base.2 However, often there are tradeoffs, w.r.t. performance
and user experience [3], resulting app size [4], degree of
maturity and power of the development tools (e.g., the lack
of appropriate debugging facilities), robustness of the created
apps due to additional sources of errors introduced by the

1Conceptual similarities w.r.t. the user interface design, though, have rather
grown during recent years, e.g., the constraint layout in Android bears a
resemblance to the storyboard in iOS.

2For an overview of the different approaches refer to Section II.

Dominik Schultes
Stempel

added abstraction layer3, or—perhaps most importantly—an
additional dependency on the used cross-platform framework:
if the respective framework does not support a crucial new
platform feature or even fully disappears at some point in the
future, one might end with a useless code base and might be
forced to manually migrate to a different framework.

When looking at these tradeoffs, going one step back and
using the platform-specific SDKs appears in a better light,
but, of course, we still need to find ways to reduce the
high effort of creating and keeping two code bases. The
gap w.r.t. the employed programming languages has closed
somewhat by introducing Swift in 2014 and making Kotlin the
preferred language for Android development in 2019. Even
though Objective-C and Java have similarities as well (both
are object-oriented and have the programming language C
as a common ancestor), the similarities between Swift and
Kotlin are considerably bigger: at some points, it is even
hard to believe that both languages have been developed
independently of each other. Due to the existing similarities,
it gets attractive to think of automatically transpiling the code
of one language to the other and vice versa. Some language
constructs bear such a striking resemblance that even a simple
script that applies search-and-replace using regular expressions
could be worth giving it a try. But is it really that simple?
How promising is the approach of creating a Swift-Kotlin-
transpiler? How much development effort could be saved this
way?

Our Contributions: We present a new cross-platform
development approach that avoids, on the one hand, the
tradeoffs of existing cross-platform development frameworks
and has, on the other hand, the potential to considerably reduce
the usual overhead that arises by creating and maintaining
two code bases (Section III). We conduct a comprehensive
comparison of language constructs of Swift and Kotlin in
order to distinguish between constructs that are identical,
very similar, transpilable with some effort, and fundamentally
different (Section IV). As the centerpiece of our develop-
ment approach, we introduce SequalsK, the prototype of a
bidirectional transpiler, i.e., a transpiler that is able to create
syntactically and semantically correct Kotlin code out of Swift
code and vice versa (Section V). In a case study, we apply
our approach, and in particular our transpiler, to a board game
app in order to analyze the possible savings w.r.t. development
effort (Section VI).

II. RELATED WORK

There are many different cross-platform development frame-
works that have the common goal to develop apps for multiple
platforms from only one code base. We adopt the categoriza-
tion from [6].4 The web approach summarizes the attempt
to offer a web application, developed with standard web
technologies (HTML, CSS, JavaScript) and viewed within the
normal browser app on the mobile device; usually, modern

3For example [5] reports inconsistencies that are caused by the cross-
platform framework Xamarin.

4There are alternative categorizations as well, e.g., [7]–[9].

HTML5 features and some additional frameworks like jQuery
Mobile [10] or Sencha Ext JS [11] are used to offer an
acceptable user experience on the mobile device. Due to the
restricted access rights of the browser, web applications will
never be on a par with a mobile app that is installed on
the device. The hybrid approach uses web technologies as
well but bypasses the browser restrictions by packing the web
code together with a web view component and a bridge that
connects JavaScript function calls with native features in order
to form a mobile app that can be regularly installed on the
target platforms. Widespread representatives of this approach
are, for example, Cordova [12] and Ionic [13]. The interpreted
approach works by providing runtime engines for the targeted
platforms that are able to interpret the same source code
written in some language and execute it on the respective plat-
form. Appcelerator [14] and React Native [15], for example,
interpret JavaScript code, Flutter [16] interprets Dart code. The
cross-compiled approach means that code is written in some
language and is then processed by different compilers that
produce for each target platform a separate, executable unit.
For example, Xamarin [17] reads C# source code and outputs,
amongst others, apps for Android and iOS; Qt [18] has similar
abilities reading C++ source code instead. The model-driven
approach bears analogy to the cross-compiled approach in the
sense that apps for the target platforms are generated from a
common source—with the distinction that the common source
is not written in a programming language, but in a domain-
specific language. MD2 [19], [20] is an example technology
for this approach. Disadvantages of all these approaches have
already been mentioned in Section I.

A different approach is to develop for one platform natively,
i.e., with the suggested programming language using the
official SDK, and use a tool to make a compiled version of
the code available at the other platform. This way platform-
specific parts of the app have to be implemented once more,
but platform-independent parts like data structures and busi-
ness logic can be reused. For example, Kotlin/Native [21]
allows the creation of a library out of Kotlin code which can
be used by Swift code in an iOS project.5 By this means,
it is possible to get rid of some of the problems of the
above mentioned five approaches. At least the code base
can be used to directly create an app for one platform so
that the tool dependency is somewhat reduced. W.r.t. user
experience and performance good results can be expected as
well. However, the course of development is not optimal: in
the Kotlin/Native example, Swift developers who spot a bug
in the provided library cannot fix it themselves but have to
ask the Kotlin developers to fix it for them and to provide
a new version of the library. They even cannot analyze the
source code in the language that they are familiar with. In
times of agile software development where “working software
[is valued] over comprehensive documentation” [24], it is
a drawback if comprehensive, up-to-date documentation is

5There are similar considerations and tools for the opposite direction [22],
[23].

always compulsory to compensate for the fact that the source
code cannot be examined in an appropriate way.

Instead of providing a compiled library, it is an interesting
idea to transpile the source code of one programming language
to the source code of the programming language of the other
platform [25], [26]. This way, all developers can analyze
and understand the used code in their own language, i.e.,
the previously mentioned ‘documentation-problem’ is avoided.
But still, the course of development is not optimal since the
developers of one platform depend on the bug fixing and
improvement efforts of the developers of the platform that
the code originally has been implemented for.

There are several unidirectional transpiler projects either
from Kotlin to Swift [27] or from Swift to Kotlin [28], [29]. On
the one hand (Swift to Kotlin), in particular Gryphon, is quite
mature generating code that is—in the best cast—syntactically
and semantically correct so that it can be used without manual
corrections. On the other hand (Kotlin to Swift), Kotlift is less
ambitious and it is likely that manual postprocessing is needed,
which might be acceptable if the Kotlin code was transpiled
only once to Swift. But, in reality, it is much more likely that
the Kotlin code is improved and extended from time to time so
that the repeated manual postprocessing would get infeasible.

There is work on bidirectional transpilers between Ada and
Pascal [30] and between COBOL and C++ [31], which are
languages that are quite different from Kotlin and Swift. In
both cases, the focus is not on using bidirectional transpilers
within a cross-platform software development project.

There are blog articles that compare language constructs of
Swift and Kotlin [32], [33], however, they tend to concentrate
on the aspects with high similarity and somewhat exclude the
difficult parts.

III. NATIVE CROSS-PLATFORM DEVELOPMENT APPROACH

Usually, mobile apps—and, generally, applications with a
graphical user interface—are developed applying some sort of
model-view-controller (MVC) pattern [34], as depicted twice
in Fig. 1, once within the top rectangle showing the iOS
version of an app, and once within the bottom rectangle
showing the analogous Android version.6 The model stands
for the state and behavior of the application, in other words,
it covers both the structures that hold the application’s data
and the business logic. The view consists of elements that are
used to present the application’s state to the user and to accept
the user’s input. The controller contains code that reacts to
user actions, for example, by calling methods of the model in
order to update the application’s state. The controller can also
be notified by the model that something has changed so that
it can update the view accordingly.

6Note that there are various variants of the MVC pattern as well as related
patterns like model-view-presenter (MVP) [35] or model-view-viewmodel
(MVVM) [36]. Here, we adopt the concrete representation and wording
from [37]. Also note that with the introduction of SwiftUI [38] the MVC
representation of an iOS app might no longer be accurate in the future;
however, since we solely concentrate on transpiling the model part, these
subtleties are not relevant for this work.

Fig. 1. Overview of the proposed native cross-platform development
approach.

Without the double-headed “Transpile” arrow, Fig. 1 rep-
resents the traditional way to develop an app for iOS and
Android using two separate code bases. In most cases, it
is possible to reuse assets, in particular images, for both
platforms. Apart from this, there is much work that has to
be done twice. Note that while the controllers and views are
platform-specific, using specific APIs that are provided by
each platform, the models typically only differ by the used
programming language.

We propose—in order to avoid the already mentioned
disadvantages of cross-platform development frameworks that
work with a single code base—to stick with the separate
native development relying on two code bases but—in order to
reduce the total effort—to introduce a bidirectional transpiler
that is capable of translating the iOS model written in Swift
to the Android model written in Kotlin and vice versa. By
this, the effort of writing the model twice can be avoided.
Fig. 1 represents this idea by adding the double-headed
“Transpile” arrow. A naive counting of the components shows
that traditionally seven components (twice model, view, and
controller and once the assets) have to be taken care of, while
our transpiler approach reduces this to six components since
the model has to be developed only once. This might appear as
just a small saving, but depending on the extent of the model
in relation to the rest of the code this can lead to significant
savings, cf. Section VI.

Provided that we have a bidirectional transpiler that pro-
duces syntactically and semantically correct code, we can
organize the development of a two-platform app as follows.
We work with one team of iOS/Swift experts and one team of
Android/Kotlin experts. Each team is able to make the most
of the respective platform using modern features and working
with the official tools. The work on the model part of the app
can be shared in an arbitrary way among both teams. Each

team can enhance the model, add additional features, and fix
bugs in their own preferred programming language. Each team
can use the model directly from their respective controller
code, e.g., call methods of the model, and, if necessary,
examine the model code during debugging, regardless of
whether the relevant part was originally developed in their
own language or in the other one. Both the Swift and the
Kotlin translation of the model should be kept under version
control. When a change is committed, the transpiler is used to
translate the new version to the other language; the outcome is
committed as well. This way, it makes no difference whether a
Swift programmer changes Swift code and then another Swift
programmer works with the updated code or whether a Kotlin
programmer changes Kotlin code and then a Swift programmer
works with the transpiled code. Both teams have equal rights,
they can work in parallel so that the time to market for none
of the platforms is delayed. No team must wait for the other
team to implement an important feature to the model since
each team can improve the model on its own.

IV. SWIFT VS. KOTLIN

A complete and systematic comparison of the programming
languages Swift and Kotlin would exceed the scope of this
paper. Both are complex languages offering a lot of features
whose specifications would have to be examined in detail.
Fortunately, in every-day programming usually only a subset
of all features that a programming language provides is used
so that it can be reasonable to concentrate on a frequently-
used subset first. To avoid a random choice, in this section
we deal with all aspects that are covered in the introductory
chapter “A Swift Tour” of the official Swift documentation
[39], assuming that the most important and most interesting
features have been selected for that chapter. In addition, in
Section V-B we mention some additional features that are
supported by our transpiler.

In general, we concentrate on aspects that belong to the
programming language itself, i.e., that can be found in the
grammar of the language. We do not want to compare the APIs
of both environments. However, there is no strict boundary be-
tween language and API, e.g., in Swift arrays and dictionaries
are part of the grammar of the language, while in Kotlin these
features are part of the API. Hence, at some points, we have
to touch the API as well.

The following subsections match the sections of “A Swift
Tour” [39]. The findings are summed up in Tab. I. We
distinguish between constructs

• that are identical in both languages (=), e.g., var x=1,
• that are very similar (≈) in the sense that a simple string

replacement (without using regular expressions) would be
sufficient to transpile the code, e.g., let x=1 vs. val
x=1,

• that can be transpiled with some effort (↔), and
• that are fundamentally different (6=).

A. Simple Values

In contrast to Kotlin, in Swift we do not need an explicit
main program but can write the code of the main program just
directly in the global scope (↔). Simple output to the console
is very similar in both languages (≈). Declaring and initializ-
ing a variable as well as reassigning a new value is identical
(=). W.r.t. constants both languages use different keywords
(≈). However, the difference at this point gets considerably
bigger when dealing with arrays (↔): in Swift an array is a
value type so for a constant array it is not allowed to change
one of its elements, in Kotlin an array is a reference type
and only reassigning another array is forbidden for a constant
array while changing the contents is allowed. Basic types
(Int, Double, Boolean), type inference, and providing
explicit types are very similar concepts in both languages (≈).
However, w.r.t. implicit casts there are differences, e.g., in
Swift an Int is automatically cast to Double if required,
in Kotlin an explicit cast is necessary (↔). Converting an
integer to a string works differently (↔). Both languages
support string interpolation with small differences in syntax
(↔). Multiline strings are supported in both languages—with
some subtle differences, for example, w.r.t. the indentation
rules (↔).

In Swift, arrays and dictionaries are built into the language
with a concise syntax; in Kotlin only the indexing suffix in
order to access an element of a collection is part of the
grammar; apart from that, arrays (with fixed size), lists (with
variable size), and dictionaries (rather called maps in Kotlin)
are represented by classes of the standard API (↔). Reading
or changing an element of a collection works in the same way
in Swift and Kotlin (=).

B. Control Flow

Most common operators are identical (=) or similar (e.g.,
the nil-coalescing/elvis operator) (≈), however, Swift does not
support increment and decrement operators (↔).

The if-statement can be transpiled with little effort (↔).
Optional binding, i.e., checking whether an optional variable
is not nil and introducing a new variable that holds the
unwrapped contents, is done within an if-statement in Swift,
while Kotlin uses a quite different way (↔). Conceptually, the
switch/when-statements of Swift and Kotlin are very similar,
but the syntax has some differences (↔); the quite special
where-clause of Swift has no correspondent in Kotlin (6=).

Using a for-loop in order to iterate through an array or
through a range of integers in forward direction can be easily
transpiled; the same applies to iterating through all key-
value-pairs of a dictionary, although the technical background
is quite different: Kotlin employs a so-called destructuring
declaration at this point, while Swift employs a tuple, a built-in
feature of the language, which is of more general use (↔).

While-loops and repeat/do-while-loops have only small syn-
tactical differences (↔).

TABLE I
COMPARISON OF SWIFT AND KOTLIN LANGUAGE CONSTRUCTS (SECTION IV) AND LIST OF FEATURES FULLY (XX) OR PARTLY (X) SUPPORTED BY THE

SEQUALSK TRANSPILER (SECTION V).

construct similarity supported
Simple Values

form the main program ↔ X
print something to the console ≈ XX
declare a variable = XX
declare a constant ≈ XX
mutate an array ↔ X
handle basic types ≈ X
implicitly cast an Int to a Double ↔ –
convert an Int to a String ↔ X
interpolate a string ↔ X
handle multiline strings ↔ X
create an array, a list, and a dictionary ↔ X
access an element of a collection = XX

Control Flow
most common operators = XX
nil-coalescing/elvis operator ≈ XX
increment/decrement operators ↔ XX
if-statement ↔ XX
optional binding ↔ XX
switch/when-statement ↔ XX
where-clause within switch 6= –
for-loop ↔ XX
while-loop and repeat/do-while-loop ↔ XX

Functions and Closures
declare a function ≈ XX
return from a function = XX
call a function ↔ XX
argument labels vs. parameter names ↔ XX
overload a function by different argument labels 6= –
tuple as return value ↔ X
nested functions = XX
functions as first-class citizens ↔ XX
closures with ≤ one default parameter name ↔ XX
closures with > one default parameter name ↔ –

Objects and Classes
declare and instantiate a class = XX
access properties and functions of an object = XX

construct similarity supported
Objects and Classes (continued)

initializers / constructors ↔ X
class inheritance ↔ XX
override a function ↔ XX
computed properties ↔ XX
property observers ↔ X
optional chaining / safe calls = XX

Enumerations and Structures
enumerations (incl. properties and functions) ↔ XX
raw values of enumeration cases ↔ X
switch/when on enumeration cases ↔ XX
init an enumeration by raw value ↔ XX
associated values of enumeration instances ↔ –
read-only usage of structs / data classes ↔ XX
mutating usage of structs / data classes ↔ –

Protocols and Extensions
declare a protocol / interface ↔ XX
implement a protocol by a class ↔ XX
implement a protocol by a struct ↔ –
use the name of a protocol as a type = XX
extensions (except for subsequent special cases) ↔ X
use extension to implement a protocol 6= –
use extension to modify an Int value 6= –

Error Handling
declare a throwable construct ↔ XX
group related errors ↔ –
mark a function that throws an error ↔ XX
throw an error = XX
catch an error ↔ X
place cleanup code ↔ –
handle a function result as optional (try?) ↔ XX

Generics
declare a generic function ↔ XX
declare a generic class or enumeration = XX
enumerations with associated values of generic types ↔ –
declare a generic protocol / interface ↔ XX
specify generic constraints ↔ –

C. Functions and Closures
Declaring a function with or without parameters and with or

without a return value is very similar in both languages (≈).
The return-statement is even identical (=). Calling a function,
however, exhibits an important difference: In Swift, each pa-
rameter value usually must be preceded by the corresponding
parameter name (↔). To make matters more difficult, in Swift
one can distinguish between an argument label, which is used
when calling a function, and a different parameter name, which
is used within the function body; Kotlin does not support such
a distinction (↔). In Swift, a function can be overloaded by
another function with the same name, but different argument
labels; in Kotlin this is not possible since Kotlin does not share
the concept of argument labels (6=).

In Swift, multiple values can be returned from a function
using a tuple—a quite general concept already mentioned in
Section IV-B, which is not directly supported in Kotlin; it can
be emulated by introducing a corresponding data class (↔).

The concept of nested functions is identical in both lan-
guages (=).

Both in Swift and in Kotlin, functions are first-class citizens
and can be used as a type for parameters, return values, and

variables, in other words, functions can be passed to functions,
returned from functions, and stored in variables; the syntactical
differences are rather small (↔).

With closures (Swift) and lambda expressions (Kotlin),
both languages have similar concepts of a special kind of
anonymous functions, i.e., blocks of code that can be passed
to higher-order functions and called later; the syntax of both
languages has some similarities as well as some differences
at this point (↔). Kotlin supports only one default parameter
name for a lambda expression (it), while Swift allows using
$0, $1, $2, . . . as default names for any number of parameters
of a closure (↔).

D. Objects and Classes

Declaring a class and instantiating it, i.e., creating an object,
is identical in both languages (=). Accessing a property or
calling a function of an object works identically as well (=).
Swift and Kotlin provide different options in order to initial-
ize an object. At first glance, the concepts—designated and
convenience initializers on the one hand (Swift) and primary
and secondary constructors on the other hand (Kotlin)—might
seem quite similar, however, there are several more or less

subtle differences that have to be considered when finding the
correct counterpart for an initialization construct in the other
language (↔).

With respect to inheritance, there are both similarities,
e.g., writing the name of the superclass after a colon, and
differences, e.g., using the keyword open in the superclass
declaration in Kotlin (↔). The same observation applies to
overriding functions (↔).

Both languages support computed properties, i.e., properties
that do not just represent a stored value, but that allow arbitrary
getter and setter code that defines what happens when the
property is read or written to; the syntax, however, is not
identical (↔). In addition, Swift allows so-called property
observers (willSet and didSet); Kotlin does not provide
a direct counterpart, but writing an appropriate setter can
emulate property observers in most cases (↔).

Optional chaining (Swift) and safe calls (Kotlin), i.e., using
?. to safely access a function or property of a variable that
might be nil, work identically in both languages (=).

E. Enumerations and Structures

Both languages support enumerations and allow to add
properties and functions; the basic syntax is somewhat differ-
ent (↔). In Swift, for each enumeration case a raw value can
be defined; this can be emulated in Kotlin as well (↔); Swift
handles raw values in a more convenient way (e.g., automatic
numbering), while Kotlin offers more flexibility (e.g., more
than one raw value). A switch/when-statement can be applied
to enumeration cases in both languages (↔). A special failable
initializer can be used in Swift to try to retrieve an enumeration
case that matches a given raw value; in Kotlin this can be
emulated by providing an appropriate static invoke operator
(↔).

In Swift, each particular instance of an enumeration case
may be enriched by associated values; Kotlin does not support
associated values for enumerations; however, the behavior can
be emulated by introducing for each enumeration case an own
class with the respective associated-value declaration nested
in one sealed class that represents the enumeration type (↔).

In addition to normal classes and enumerations, both lan-
guages include one additional class-like construct: structs
(Swift) and data classes (Kotlin). While the typical use cases
of these constructs are often similar, the technical details are
different: structs are passed by value, data classes are passed
by reference. If these constructs are used in a read-only fash-
ion, they are virtually equivalent (↔); otherwise, transpiling
might be possible (e.g., by introducing—if required—explicit
deep copying in Kotlin), but very difficult (↔).

F. Protocols and Extensions

A protocol in Swift and an interface in Kotlin have identical
semantics; the way to distinguish between constant and vari-
able properties differs (↔). Implementing a protocol/interface
is similar, but in Kotlin implemented properties and functions
have to be preceded by the override keyword (↔). Structs
and data classes can also implement protocols/interfaces (↔).

The name of a protocol/interface can be used as a type in both
languages (=).

Extensions can be used in both languages to add further
functionality to existing types (↔). In Swift, an extension can
be used to make an existing type implement a protocol; this is
not supported in Kotlin (6=). Furthermore, in contrast to Swift,
in Kotlin an extension cannot be used to modify the value of
a primitive data type like an Int (6=).

G. Error Handling

Error (Swift) and exception (Kotlin) handling are quite sim-
ilar concepts, but there are several differences when looking at
the details. In Swift, constructs that can be thrown and caught
must implement the Error protocol, while in Kotlin sub-
classes of Throwable—or, in most cases, of Exception—
are used (↔). In Swift, it is usual to group related errors within
an enumeration; in Kotlin this can be emulated by separate
classes nested in a sealed class (↔), analogously to dealing
with associated values of an enumeration (cf. Section IV-E).
Functions that may throw an error must be marked by the
throws keyword in Swift, while this is not necessary in
Kotlin (↔).7 Throwing an error or an exception is done by
using the throw keyword (=).

The do-catch- (Swift) and try-catch-blocks (Kotlin)
work analogously; however, in Swift, the call of a function that
may throw an error must be explicitly marked by a preceding
try keyword (↔). In Kotlin, a try-block can be extended by
a finally-part that contains cleanup code; in Swift cleanup
code can be placed anywhere within a discrete defer-block
(↔). In Swift, try? in front of a function call can be used
to conveniently ignore an error and get nil instead; since
try can be used in Kotlin as expression, this behavior can be
emulated (↔).

H. Generics

Both languages support generic functions, using angle
brackets to enclose generic parameters; only the position
within the function declaration differs (↔). Both Swift and
Kotlin support generic types, in particular, generic classes and
enumerations, which can be declared with exactly the same
syntax (=). Note that the already mentioned fact that Kotlin
does not directly support associated values (cf. Section IV-E)
makes it difficult to emulate an enumeration with an associated
value of a generic type (↔).

Dealing with generic protocols or generic interfaces, re-
spectively, differs significantly: while Kotlin, when declaring
a generic interface, uses the same syntax as for generic class
declarations, Swift features a quite special syntax at this point
by using an associatedtype-declaration within the body
of the protocol (↔). This difference makes a transpilation dif-
ficult in many respects, in particular when specifying generic
constraints (↔).

7In contrast to Java, Kotlin only supports unchecked exceptions so that the
throws keyword becomes obsolete.

I. Summary

Plain summing up yields 11 identical, 5 similar,
45 transpilable-with-more-effort-than-string-replacement, and
4 fundamentally different constructs. On the one hand, this
shows that Swift and Kotlin actually are different languages
despite the fact that you can find some examples where
the languages seem to be almost equal. Thus, just working
with “find and replace” will not lead to satisfying results.8

On the other hand, there is rarely an important construct
in one language that has no suitable correspondent in the
other language. We can conclude that creating a bidirectional
transpiler that covers all important constructs seems possible,
but non-trivial.

V. THE SEQUALSK TRANSPILER

A. Architecture and Implementation

We strive for developing one bidirectional transpiler and
not two separate unidirectional transpilers because we want to
reuse some components and we want to create a single tool
that is able to transpile the source code of one language to
the other language and back again in order to provide instant
feedback on whether the current code can be processed in
both directions successfully. Note that this goal is considerably
more challenging than developing a unidirectional transpiler
since we cannot just rely on the existing compiler of one
platform because closely building on the compiler of one
language would make processing the other language much
more difficult. Instead, we develop the bidirectional transpiler
basically from scratch, except for the lexer and parser part,
where ANTLR [40] is used as valuable help. Fig. 2 gives an
overview of our SequalsK transpiler, the used technologies,
and the data flow. The starting point for the development are
the grammars of both languages, each separated in a lexer

8Note that the differences would be considerably bigger if Objective-C was
compared to Java.

and a parser part (depicted in yellow in Fig. 2). In the case of
Kotlin, the official grammar was directly available in ANTLR4
notation [41]. In the case of Swift, an unofficial version
relating to Swift 3.0.1 was available [42], which needed some
corrections and to be split up into a lexer and a parser part.
Using ANTLR we generated lexer and parser code in Java
(depicted in orange). The central class Transpiler holds
references to the lexers and parsers and coordinates the whole
processing of the given source codes. The main part of the
transpiler is written in Kotlin (depicted in various shades of
green, one shade for common classes, a darker one for classes
that process Swift input, and a lighter one for classes that
process Kotlin input).

The source code that should be transpiled is, firstly, pro-
cessed by the corresponding lexer, which retrieves the tokens;
the tokens are passed on to the parser, which, secondly, builds
the parse tree (the processed data is depicted in blue in Fig. 2,
a dark shade for Swift, a light shade for Kotlin). Our main
contribution are the Swift and Kotlin parser visitors, which,
thirdly, come into action at each relevant node of the parse
tree, while the tree is traversed. Each parser visitor uses its
own language-specific type-inference mechanism in order to
infer the types of declared variables. This is non-trivial since
both languages while being statically typed do not require
giving explicit type annotations within the declarations. The
functionality of a symbol table is needed by both visitors so
that this component can be reused. For example, when a visitor
processes a node of the parse tree that represents a variable
declaration, it infers the type of the variable and stores the
name and the type in its own instance of the symbol-table
data structure. Later on, the entries of the symbol table can
be retrieved, e.g., in case of function overloading, in order
to decide which function is actually called depending on the
types of the parameters—this is important to pick the correct
argument labels when transpiling from Kotlin to Swift.

The parser visitors also use common helper classes that sup-

Fig. 2. Overview of the SequalsK transpiler. The upper third shows the needed components and the data flow of transpiling Swift source code to Kotlin.
The lower third deals with the opposite direction. The middle third contains the components that are shared by both parts of the bidirectional transpiler. A
broad arrow means “generates”, a normal thin arrow means “uses”.

port the parsing process, in particular, by navigating the parse
tree to look up certain elements, and helper classes that support
the translation process, for example, a simple map that helps
to replace Bool (Swift) by Boolean (Kotlin) and vice versa.
Furthermore, a separate class, the code generator, is used to
write the transpiled code, also dealing with white-space and in-
dentation issues. The resulting, transpiled code might not work
on its own. For some aspects we need some supporting code
in the target language. Therefore, the transpiled code should
be viewed together with a static support file. For example, the
Swift-support-in-Kotlin file contains the line annotation
class argLabel(val name: String). When Swift
code is transpiled to Kotlin the original Swift argument labels
are kept in annotations within the Kotlin code. This keeps the
Kotlin code readable and usable, but also allows a translation
back to Swift and restoring the original argument labels.

B. Supported Features

Currently, the SequalsK transpiler is in the state of a
working prototype. Tab. I was already presented in Section IV
to summarize the comparison of the considered language
constructs. Now, we revisit the table and add a statement
(column “supported”),

• whether our transpiler supports the construct without any
limitations (XX),

• with some limitations that are probably negligible in most
normal use cases (X), or

• whether our transpiler does not support the construct (or
only rudimentary) (–). Note that in case of a construct
marked by ↔, this means that this feature can be added
in a future release of the transpiler, while in case of
a construct marked by 6=, this means that this feature
would probably never be added, which implies that this
particular language construct must be avoided in a cross-
platform development project.9

In addition to the constructs shown in Tab. I, which covers
all aspects mentioned in “A Swift Tour” [39], the SequalsK
transpiler also supports the following features: static properties
and functions (Swift) / companion objects (Kotlin), subscripts
(Swift) / get and set operators (Kotlin), and inout param-
eters (Swift).

In the following, we give some selected examples of source
code, exactly as it is produced by the SequalsK transpiler.10

Fig. 3 demonstrates how a primary constructor is transpiled.
Note that it would be possible to make the Kotlin code look
more like the Swift code by separately defining a constant
property x and by using the keyword constructor to define
a constructor. However, this would be less elegant and we
strive for code that most programmers of the target language
will prefer. Otherwise, a Kotlin programmer might manually
improve the code by introducing a Kotlin-style primary con-

9Fortunately, all 6=-constructs can be considered as quite exotic and,
probably, can be easily avoided.

10We just made a few adjustments to indentation and line breaks to save
some space.

// Swift
class C {

let x: Int
init(x: Int) {

self.x = x
}

}

// Kotlin
class C(val x: Int) {
}

Fig. 3. Example: a primary constructor.

// Swift
func greet(_ person: String, from hometown: String) {

print(”Hello \(person)!”)
print(”Glad you could visit from \(hometown).”)

}

func main() {
greet(”Bill”, from: ”Cupertino”)

}
main()

// Kotlin
fun greet(@argLabel(” ”) person: String, @argLabel(”from”)

hometown: String) {
println(”Hello ${person}!”)
println(”Glad you could visit from ${hometown}.”)

}

fun main() {
greet(”Bill”, ”Cupertino”)

}

Fig. 4. Example: argument labels.

structor and would get annoyed if a future transpilation from
Swift destroyed their work.

As mentioned at the end of Section V-A, the generated
output has to be treated in combination with a small support
file. The already mentioned example of dealing with argument
labels is depicted in Fig. 4. This example emphasizes the fact
that bidirectional transpilation is particularly challenging. If
we transpiled only from Swift to Kotlin, we just could forget
about the argument labels. But, since we want to allow Kotlin
developers to enhance the code as well, we need the shown
mechanism to restore the original argument labels so that the
Swift developers do not lose their accustomed code style.

Swift’s property observers willSet and didSet can be
rewritten in Kotlin as two sections of a setter as depicted
in Fig. 5. The transpiler introduces a new auxiliary variable
newValue whose name starts with a rarely used Unicode

character to avoid conflicts with existing variables and to
help the transpiler to restore the original Swift code out of
the produced Kotlin code. Note that a Kotlin programmer
can add arbitrary code above or below the line field =
newValue and the code is automatically assigned to the

correct property observer when transpiling back to Swift.
The example shown in Fig. 6 demonstrates that although

the syntax of a generic protocol (Swift) is quite different from
the syntax of a generic interface (Kotlin), it is possible to

// Swift
class C {
var x: Int = 0 {
willSet {

print(”old: \(x)”)
}

didSet {
print(”new: \(x)”)
}
}
}
func main() {

C().x = 42
}
main()

// Kotlin
class C {
var x: Int = 0
set(newValue) {

println(”old: ${field}”)

field = newValue

println(”new: ${field}”)
}

}

fun main() {
C().x = 42
}

Fig. 5. Example: property observers.

// Swift
protocol I {
associatedtype T
func f() −> T
}

class C: I {
typealias T = Int
func f() −> T {
return 42
}
}

// Kotlin
interface I<T> {

fun f() : T
}

class C : I<Int> {

override fun f() : Int {
return 42
}
}

Fig. 6. Example: a generic protocol/interface.

transpile the code in both directions, offering developers at
both sides straightforward and maintainable code. Note that
some subtle differences like the fact that in Kotlin a method
that implements an interface needs the override keyword
makes the development of a transpiler more challenging.

VI. CASE STUDY: BOARD GAME

In the context of a lecture on Swift, a board game app had
been developed, covering the games Checkers and Reversi; the
app consisted of 13 source code files, summing up to 854 lines
of code. The app offers a single-player mode, ensures that only
valid moves can be performed, and contains a straightforward
implementation of the minimax algorithm [43, p. 165] in order
to provide an AI as the opponent. The code is structured
according to the model-view-controller design pattern (cf.
Section III); the model covers data structures, in particular,
to store the state of the board, the game logic, in particular,
the functionality to determine the set of allowed moves and to
check which player has won, and the implementation of the
AI. The app works without any limitations. Fig. 7 represents
the model part of the app as an UML class diagram. The
controller, which is not depicted in the diagram, only interacts
with the model via a reference of type Game; depending on
the chosen game, the controller creates an appropriate instance

Fig. 7. Simplified UML class diagram of the model of the board game app.

of GenericGame.11

Since the app originally had been intended as an example
to demonstrate a wide range of Swift features, it seems to
be a suitable test case for a transpiler. Thus, the first version
of the SequalsK transpiler has been developed targeting the
board game example. The original Swift code was only slightly
simplified resulting in 833 lines of code; 77 % of the source
code belongs to the model part.

The SequalsK transpiler is able to transpile the model part
of the Swift code to syntactically and semantically correct
Kotlin code, achieving good code quality (w.r.t. readability
and maintainability) as well. After transpiling the code of
the model to Kotlin, the author spent only one hour and 43
minutes in order to manually add Kotlin code for the view and
controller parts, resulting in a fully working Android app with
the same functionality as the original iOS app. The resulting
Android app consists of 762 lines of Kotlin code; 86 % of
the source code belongs to the model part and, thus, has been
automatically generated by transpiling from Swift. In other
words, 86 % of the effort of writing an Android version of the
board game app could be saved in terms of lines of code. At

11In the diagram we have arbitrarily chosen to use Kotlin keywords like
interface and so on. Its purpose is to give a rough overview of the
architecture of the board game app, in particular, to demonstrate that an
interesting mixture of language constructs (generic classes, enum classes, a
data class, interfaces, . . .) is used. However, the details of the app are not
in focus. Therefore, several simplifications have been made: only very few
methods are included, only the classes needed for one concrete game, namely
Checkers, are shown, and we draw direct associations to CheckersPiece
and CheckersGameLogic, just assuming that CheckersPiece is sub-
stituted for P in generic classes and CheckersGameLogic for GL.

that point, transpiling back from Kotlin to Swift was supported
as well for that version of the board game.

In the second stage, in the Android app Chess was added
as a third game, written in Kotlin. Note that the game logic of
Chess is somewhat more complex than that of Checkers and
Reversi. In total, the resulting app consists of 1 221 lines of
code. The bidirectional transpiler did not work out of the box,
but some features had to be added to cover aspects introduced
by the new Chess part of the app. To be precise: 11 % of
the lines of code of the resulting transpiler have been added
or changed during the second stage. Now, it is possible to
transpile the model part of the app including Chess in both
directions, without spending any manual rectification work.

Summing up, we find that the SequalsK transpiler can be
used to fully transpile the model part of a medium complex
app and, thus, to save a high percentage of the effort of porting
an app from one platform to another.

VII. CONCLUSION

The previous section demonstrated that the proposed native
cross-platform development approach looks promising. If we
are willing to avoid rather exotic programming constructs,
the existing prototype of the SequalsK transpiler is already
able to successfully transpile the model part of an app from
Swift to Kotlin and vice versa. Summing up, to implement
the proposed approach in a real cross-platform development
project, we need the following ingredients:

• a team that is composed of two subteams—iOS/Swift
experts on the one hand, and Android/Kotlin experts on
the other hand—(cf. Section III),

• project management that coordinates the platform-
independent parts of the development process, in partic-
ular the work on the model part,

• the bidirectional SequalsK transpiler (cf. Section V),
• a project infrastructure, in particular, a version control

system, that allows to easily update the model in both
languages (cf. Section III),

• support files for both platforms that are needed to make
some transpiler output compilable (cf. Section V), and

• particular coding conventions that help to avoid constructs
that are difficult to transpile (cf. Tab. I). With further
enhancements of the transpiler, some limitations noted in
the coding conventions may be removed in the future.12

The proposed approach avoids disadvantages of existing
cross-platform development frameworks. Most importantly, we
get rid of the tool dependency: if we developed a huge cross-
platform project using the SequalsK transpiler and building
two large code bases over the years and if the SequalsK
transpiler was not maintained and was not be able to work with

12Such coding conventions should not be viewed as mere limitations caused
solely by missing features of the transpiler. Some rules may also help to
improve the code quality. For example, using only Double literals and no
Int literals in the context of Double variables or parameters does not only
simplify the transpilation (since the Kotlin compiler will not accept Int
literals at this point), but also leads to (slightly) more readable code because
it is clearly visible that the further processing is done with a floating-point
number and not with an integer.

future versions of Swift or Kotlin, then we still would be able
to use and maintain our native code bases in the future and we
would only lose the advantage of maintaining the model only
once. In contrast, if we developed a huge code base with, for
example, the programming language Dart in combination with
the framework Flutter and Flutter reached its end of life, we
would practically have to throw the whole code base away.13

The observed savings rate of 86 % in the board game case
study may be considered as the best case. In most apps,
the fraction of platform-specific code will be higher and,
thus, the savings will be smaller. However, savings can be
improved, if we provide a common interface (with different
underlying platform-specific implementations) for frequently
used features like dealing with HTTP requests or retrieving
location updates [25]. In a sense, this idea has similarities
to existing cross-platform frameworks that provide a common
interface (for example, in JavaScript) for accessing various
native features. However, we must be aware of the fact that
providing such an abstraction layer will require more frequent
updates in the future since the underlying platform-specific
APIs usually change more rapidly over time than the pure
programming languages. Thus, there will be a considerable
dependency of an app development project on a SequalsK
abstraction layer. Still, we will have the great advantage that an
Android developer will be able to immediately integrate a new
Android feature—and the same applies to an iOS developer—
even if it is not directly supported by the abstraction layer as
everyone works with native technology, i.e., with Kotlin and
Swift, so that there will not be any technological gap.

When looking at the savings, one should consider not only
the hard facts but also psychological aspects: implementing
platform-specific parts twice striving for an optimal user
experience on each platform is much more satisfying then
manually implementing the model part twice being aware of
the fact that essentially the same things are programmed—
almost mindlessly—twice in two programming languages that
look very similar.

Future Work: Besides the obvious next steps—adding
further features to the transpiler and performing more and
larger case studies—we have already started a bunch of
concrete subprojects, which we consider interesting: Firstly,
we want to provide a plugin for Android Studio, in particular,
to integrate immediate feedback what language constructs can
be transpiled without causing problems.14 Secondly, it would
be nice to automatically transpile unit tests from one platform
to the other as well. This way, we could obtain additional as-
surance that the transpiler produces semantically correct code.
Thirdly, we aim at providing a common interface to frequently
used concurrency operations, like doing computational work
in several threads and collecting the results in the main thread.

Finally, we want to transpile the transpiler itself in order to
integrate the functionality in Xcode as well.

13Note that this argument is not new but is prominently mentioned in [26]
as well, however, only in the context of a unidirectional transpiler, which has
significant drawbacks as described in Section II.

14 [29] contains a similar plugin for Xcode.

REFERENCES

[1] StatCounter, “Mobile operating system market share worldwide,”
https://gs.statcounter.com/os-market-share/mobile/worldwide/2016 (ac-
cessed 01/2021).

[2] SensorTower, “Global consumer spending in mobile apps
reached a record $111 billion in 2020, up 30% from 2019,”
https://sensortower.com/blog/app-revenue-and-downloads-2020
(accessed 01/2021), 2021.

[3] P. Que, X. Guo, and M. Zhu, “A comprehensive comparison between
hybrid and native app paradigms,” in 2016 8th International Conference
on Computational Intelligence and Communication Networks (CICN),
2016, pp. 611–614.

[4] A. Ebone, Y. Tan, and X. Jia, “A performance evaluation of
cross-platform mobile application development approaches,” in 2018
IEEE/ACM 5th International Conference on Mobile Software Engineer-
ing and Systems (MOBILESoft), 2018, pp. 92–93.

[5] N. Boushehrinejadmoradi, V. Ganapathy, S. Nagarakatte, and L. Iftode,
“Testing cross-platform mobile app development frameworks,” in 2015
30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2015, pp. 441–451.

[6] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai, “Cross platform
approach for mobile application development: A survey,” in 2016
International Conference on Information Technology for Organizations
Development (IT4OD), 2016, pp. 1–5.

[7] R. Nunkesser, “Beyond web/native/hybrid: A new taxonomy for mobile
app development,” in 2018 IEEE/ACM 5th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), 2018, pp.
214–218.

[8] K. Shah, H. Sinha, and P. Mishra, “Analysis of cross-platform mobile
app development tools,” in 2019 IEEE 5th International Conference for
Convergence in Technology (I2CT), 2019, pp. 1–7.

[9] S. Charkaoui, Z. Adraoui, and E. H. Benlahmar, “Cross-platform mobile
development approaches,” in 2014 Third IEEE International Colloquium
in Information Science and Technology (CIST), 2014, pp. 188–191.

[10] “jQuery Mobile,” https://jquerymobile.com/ (accessed 01/2021).
[11] “Sencha Ext JS,” https://www.sencha.com/products/extjs/ (accessed

01/2021).
[12] “Apache Cordova,” https://cordova.apache.org/ (accessed 01/2021).
[13] “Ionic,” https://ionicframework.com/ (accessed 01/2021).
[14] “Appcelerator,” https://www.appcelerator.com/ (accessed 01/2021).
[15] “React Native,” https://reactnative.dev/ (accessed 01/2021).
[16] “Flutter,” https://flutter.dev/ (accessed 01/2021).
[17] “Xamarin,” https://dotnet.microsoft.com/apps/xamarin (accessed

01/2021).
[18] “Qt,” https://www.qt.io/ (accessed 01/2021).
[19] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-platform model-

driven development of mobile applications with md2,” in Proceedings of
the 28th Annual ACM Symposium on Applied Computing, ser. SAC ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
526533. [Online]. Available: https://doi.org/10.1145/2480362.2480464

[20] “MD2,” https://wwu-pi.github.io/md2-framework/ (accessed 01/2021).
[21] “Kotlin/Native,” https://kotlinlang.org/docs/reference/native-

overview.html (accessed 01/2021).
[22] E. Wing, “Swift on Android: The future of cross-platform pro-

gramming?” https://academy.realm.io/posts/swift-on-android/ (accessed
01/2021), 2017.

[23] “SCADE,” https://www.scade.io/ (accessed 01/2021).
[24] K. B. et al., “Manifesto for agile software development,”

https://agilemanifesto.org/ (accessed 01/2021), 2001.
[25] A. G. Olloqui, “Playtomic’s shared architecture using Swift and Kotlin,”

https://dev.to/playtomic/playtomics-shared-architecture-using-swift-and-
kotlin-320b (accessed 01/2021), 2018.

[26] V. J. Vendramini, A. Goldman, and G. Mounié, “Improving mobile app
development using transpilers with maintainable outputs,” ser. SBES ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
354363. [Online]. Available: https://doi.org/10.1145/3422392.3422426

[27] “Kotlift,” https://github.com/studo-app/Kotlift/ (accessed 01/2021),
2020.

[28] “SwiftKotlin,” https://github.com/angelolloqui/SwiftKotlin (accessed
01/2021), 2020.

[29] “Gryphon,” https://vinivendra.github.io/Gryphon/ (accessed 01/2021).

[30] P. F. Albrecht, P. E. Garrison, S. L. Graham, R. H. Hyerle, P. Ip,
and B. K. Brückner, “Source-to-source translation: Ada to Pascal and
Pascal to Ada,” in Proceedings of the ACM-SIGPLAN Symposium on
The ADA Programming Language, ser. SIGPLAN ’80. New York,
NY, USA: Association for Computing Machinery, 1980, p. 183193.
[Online]. Available: https://doi.org/10.1145/800004.807949

[31] S. Blomberg and J. Severin, “Creating a bi-directional source-to-
source compiler using MDE transformation techniques,” Master’s thesis,
Chalmers University of Technology, 2017.

[32] A. Hussain, “A comparison of Swift and Kotlin languages,”
https://www.raywenderlich.com/6754-a-comparison-of-swift-and-
kotlin-languages (accessed 01/2021), 2018.

[33] “Swift is like Kotlin,” http://nilhcem.com/swift-is-like-kotlin/ (accessed
01/2021).

[34] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, p. 2649, Aug. 1988.

[35] M. Potel, “MVP: Model-View-Presenter; the Tal-
igent programming model for C++ and Java,”
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf (accessed 01/2021),
1996.

[36] J. Smith, “Patterns – WPF apps with the Model-View-
ViewModel design pattern,” MSDN Magazine, vol. 24, no. 02,
Feb. 2009. [Online]. Available: https://docs.microsoft.com/en-
us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-
model-view-viewmodel-design-pattern

[37] “Model-View-Controller,” https://developer.apple.com/library/archive/
documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
(accessed 01/2021), 2018.

[38] “SwiftUI,” https://developer.apple.com/xcode/swiftui/ (accessed
01/2021).

[39] Apple Inc., “The Swift programming language (Swift 5.3),”
https://docs.swift.org/swift-book/ (accessed 12/2020), 2020.

[40] T. Parr, The Definitive ANTLR 4 Reference. O’Reilly UK Ltd., 2013.
[41] “Kotlin grammar,” https://kotlinlang.org/docs/reference/grammar.html

(accessed 10/2019).
[42] “Swift grammar,” https://github.com/antlr/grammars-

v4/tree/master/swift/swift3 (accessed 10/2019).
[43] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd ed. Pearson Education Limited, 2016.

